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Motivation: Wireless

�Wireless links allows 
host to roam but
� No single wireless 
solution will dominate 
�tradeoffs on range, BW 
and number of hosts

� Traditional IP routing
does not allow for 
mobility

� Changes to IP have 
negative impact on TCP

� Wireless links have 
different characteristics
from wired links
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Current Mobility Solutions

�Link layer: 
� Cell phones

� Wireless Ethernet

�Network layer: 
� Mobile IP

�Limitations:
� Neither supports multihomed devices

� Localized decisions



Transport Layer Approach

�Support for multihoming

�Access to 

� end-to-end information

�Path bandwidth

�Latency

�Error characteristics

� local information

�Link-layer aware

� application requirements 
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Contribution: Paradigm 
Change
�Move mobility support to the transport level 

using existing IP infrastructure
�Thesis work

� Mobility architecture
� Framework for multiplexing transport protocols
� Protocol examples
� In-depth study of protocol elements

�Multiplexing
�Congestion control for rate-based protocols
�Transport protocols for wireless host

� Loss discrimination



Outline

�Approach

�Architecture for link-layer aware, inverse 
multiplexing transport protocols

�Protocol suite
�Multimedia Multiplexing Transport Protocol

�Reliable Multiplexing Transport Protocol

�Protocol characteristics

�Protocol mechanisms
� Inverse Multiplexing

� Congestion Control

� Loss Discrimination
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Approach



Design Constraints

�Environmental limitations:

� Wireless: 

�Low bandwidth

�High error rate 

�High latency

� Mobility: 

�Low power

�Changing attachment points

�But: possible multiplicity of access points 
of different technologies in any area



Transport Layer Approach
�Inverse Multiplexing by B/W measurement

� Sending one flow through multiple interfaces

�Transport protocols
� Link layer-aware

� Network layer-independent

�Benefits
� Built-in mobility

� Seamlessness

� Adaptability

� Bandwidth aggregation 

� Informed choice on which link-layer to use
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Full Mobility Architecture
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Protocols



MMTP

�Service
� Best effort 
delivery of 
multimedia

�Protocol Details 
� If excess BW is available, channel with 
highest latency is filled first

� If not enough BW, frames are dropped at 
sender

� In SIGCOMM-LA “MMTP - Multimedia Multiplexing Transport Protocol”

Timely Packets versus Source Rate
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R-MTP

�Service
� Reliable transmission 
of bulk data 

�Protocol details
� Multiple channel, rate-based

� Selective acknowledgements for reliability

� Bandwidth estimation for flow and 
congestion control

� ICNP 2001 “Transport Level Mechanisms for Bandwidth 
Aggregation on Mobile Hosts”

Throughput
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Characteristics



Multiplexing

�Load balancing of data transmission

� Base individual channel load on 
corresponding share of total bandwidth
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Basic Channel Mechanism

�Rate-based transmission
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period

latency
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Measured period

Bandwidth Tracking

�Probing using packet-pair
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Congestion Avoidance

�Congestion avoidance

� Reduce sending rate before causing packet 
loss

time
congestion

slow-
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Loss Discrimination

�Distinguish congestion losses from 
transmission losses
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Multiplexing



Inverse Multiplexing

�Approach
� Send data corresponding to the fair share 
bandwidth on each channel

�Challenges
� Measuring fair share bandwidth

� Data reordering

�Solutions
� Rate-based transmission mechanism

� Admission & monitoring of delay
�constrain the use of channels with large delays



Advantages of Inverse 
Multiplexing

�Bandwidth aggregation

�Fast feedback path

�Increased performance on lossy 
channels

�Smooth handoffs

�Intelligent channel selection



Results: BW Aggregation
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�If multiple 
technologies 
are present 
on the same 
area, RMTP 
can use 
them to 
increase 
throughput



Informed Interface Use
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�Measuring BW 
and using all 
channels lead 
to better 
performance
� TCP performs 
better on the 
slower 
(115Kb) link 
with no loss 
than on the 
faster (2Mb) 
with losses



Congestion Avoidance and 
Control



Congestion Control for Rate-
Based Protocols

�Homeostatic Congestion Control
�Balance Point

�Fair-share Bandwidth

� Forces
�Bandwidth Estimation

�Probes the network to find what is the fair 
share of bandwidth

�Congestion Avoidance
� Lowers the rate if it exceeds network 
availability

�Congestion control by loss detection 

Rate



Algorithm

�Exponential increase
� Packet pairs

�Once every 5 packets

� Tracking Period

� Low pass filter

�Congestion avoidance 
� Measurement-based 

decrease

�Error measurement 
(jitter)

�Congestion Control
� Multiplicative decrease

P(n+1) = (1 – α) * P(n) + α * 
MeasuredPeriod (1)

α ∈ [0,1]
MeasuredPeriod = interarrival time

Error = ((1 - α)n) * (P0-POptimal)  (2)

n - number of measurements

NewPeriod = OldPeriod + 

(jitter(1)+…+jitter(n))/n (3)

Where n is 2 or 3

If (current_time > time_last_loss + 
RTT + 2* OldPeriod)

NewPeriod = OldPeriod*2



Challenges
�Synchronization

� All flows experience same losses

� Lower overall network utilization

Solution: add random quantity to period
P(n+1) = (1 – α) * P(n) + α * (1 + β*rnd) * MeasuredPeriod

� In our tests, β = 0.1

�Fair share versus available bandwidth
� Any flow can use all resources

� Flows that only use left-over BW can starve

� Equilibrium between flows means being aggressive

Solution: packet pair randomness



Problems with Packet Pair

�Normal flow

�Time compression

�Time expansion

Node 1 Node 2 Node 3 Node 4
bottleneck

queue

Node 1 Node 2 Node 3 Node 4
bottleneck

queue

Node 1 Node 2 Node 3 Node 4
bottleneck

no

queue



Coping with Uncertainties in 
the Measurements
� Let Pc be the current period, 

PMeasured the measured period 
and POptimal the true optimal 
period. We have 3 cases

� Too small
Pmeasured < (POptimal – (1–α) * Pc) / α

� Sweet spot
POptimal > PMeasured > (POptimal - (1-α) * Pc) / α

� Too large
PMeasured > POptimal

Next period:

P(n+1) = (1 – α) * P(n) + α * MeasuredPeriod

current

optimal

max

Period

(POptimal – (1 – α) * Pc) / α



Simulation:
Bandwidth Tracking

XMTP & TCP Reno Thoughput
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�XMTP is less sensitive to latency than 
TCP



Simulation: Multiple Flows

�Bottleneck delay 50ms

�Usage goes up with mixed XMTP traffic

�Fairness does not reflect added usage.

 Flow 1 Flow 2 Flow 3 Flow 4 Flow 5 Usage Fairness 

5 TCP 3450 3366 3344 3280 3380 16820 0.999733 

1XMTP/4TCP 14718 3422 3420 3416 3412 28388 0.612052 

2XMTP/3TCP 9947 8505 2651 2997 2759 26859 0.740284 

3XMTP/2TCP 1957 7307 8493 1364 2256 21377 0.670529 

4XMTP/1TCP 6904 812 5714 7289 2199 22918 0.756063 

5 XMTP 3458 3389 3963 5071 4896 20777 0.971885 

 



Simulation: TCP 
Friendliness
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�Depending on 
the delay, TCP or 
XMTP may 
dominate, but 
they do not 
starve each other



Loss Discrimination



What is Loss Discrimination?
�To decide if a loss was caused by congestion 
or by transmission error

�Influences the reaction to loss

� Transmission: resend data

� Congestion: use congestion control 
mechanisms
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Queue Sizes and Jitter
� Interarrival time 

depends on the 
difference of sending 
times and transit times

�Transit time is flight 
time plus queue time. 
Flight time is invariant if
� Routes are stable

� Packet sizes are constant

� Jitter is caused by 
queue sizes seen by 
packets 

IATi, i-1 = TTi – TTi-1 + TSi – TSi-1
If P is the period of a rate-

based protocol

TSi+1 = TSi + P
We expect IAT = P

Defining Jitter = IAT - P,

We get

J = TTi – TTi-1 + P - P

Therefore

Ji = FTi – FTi-1 + Qi – Qi-1

Ji = Qi – Qi-1



Heuristics

�If the jitter following a loss is negative, 
the loss is deemed a congestion loss. 
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Performance

Protocol Throughput with 1% Loss
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Protocol No Loss 0.1% Loss 1% Loss 

NewReno 2694 2808 1415 

Westwood 2763 2736 1812 

XMTP 2855 2813 2592 

 

Number of packets  

Protocol 0.1% Loss 1% Loss 

NewReno Losses 6 18 

Westwood Losses 6 22 

XMTP Losses 4 37 

XMTP Congestion 0 3 

 

�Simulation

� 3 1MB links

� Delay 40ms



Hit Ratio
Throughput with Shared Bottleneck 1% Packet Error
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Error 

Rate 

Total 

drops 

Trans. OK Not Cong. OK Not 

0 32 5 0 5 16% 27 27  0  

0.1% 28 8 2 6 21% 20 20  0 

0.5% 23 6 3 3 13% 17 14  3 13% 

1.0% 23 7 6 1 04% 16 15  1 04% 

2.0% 29 9 9 0 20 0 20 68% 

 



Conclusion



Future Work

�Link Layer Manager
� Identify available link layers

� Establish link layer connections 

� Acquire IP addresses

�Location Service
� Allow corresponding hosts to find current 
address of mobile 

�Power Management
� Efficient use of energy resources in the 
context of multiple channels



Contributions

�Architecture for transport level mobility

�Techniques for bandwidth aggregation

�Homeostatic congestion controller

�Techniques for detection of transmission 
losses

�Protocol Suite

� MMTP

� RMTP
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